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Motivation

Motivation
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New Data: What is the experimental scenario that can provide the most
informative measurements to calibrate our model? (Calibration)

Legacy Data: What can we say about the relation between the legacy data
and our model? (Verification and Validation)
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Sequential Experimental Design

Sequential Experimental Design

r(u,θ, ξ, εs) = 0

d = d(u,θ, ξ, εs)

1 Experiment: new data collected
according to the strategy obtained
in the previous design stage.

2 Inference: the newly obtained
measurements are used to update
the pdf of model parameters
(Bayes rule).

3 Design: the best design is chosen
by maximizing the expected
Shannon information gain.

Sn = {ξ∗1 , ξ∗2 , . . . , ξ∗n}

Dn = {d̂1, d̂2, . . . , d̂n}

Note that since the next design depends on the previous experiments, it does not
guarantee to find the optimal N designs among all possible combinations of N designs.
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Sequential Experimental Design

Inference Stage and Stopping Criteria

Sequential Bayesian Inference:

p(θ|Dn) =
p(Dn|θ)p(θ)

p(Dn)

=
p(d̃n,Dn−1|θ)p(θ)

p(d̃n,Dn−1)

=
p(d̃n|Dn−1,θ, ξ

∗
n )p(Dn−1|θ)p(θ)

p(d̃n|Dn−1, ξ
∗
n )p(Dn−1)

∝ p(d̃n|Dn−1,θ, ξ
∗
n )p(θ|Dn−1)

Computational aspects: Multilevel MCMC
(Cheung and Beck 2008) available in the
statistical library QUESO (Prudencio and
Schulz 2001)

When to stop the experimental process?

1 Desired precision in the estimation of
model parameters has been reached

det

∣∣∣∣E[θ − θ̂ | Dn]

∣∣∣∣ ≤ pconst

2 The reduction in the parameters
uncertainty has slowed enough

H

(
p(θ|D1)

)
≥ . . . ≥ H

(
p(θ|Dn)

)
3 Indication exists that model predictions

and experimental observations are in
disagreement{

DKL

(
p(θ|Dn)||p(θ|Dn−1)

)
, ∀n

}
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Sequential Experimental Design

Optimal Experimental Design Stage
Objective of the experiment is to learn about the model parameters θ (Lindley 1956):

ξ∗n = arg max
ξn∈Ξ

∫
D

U(dn, ξn)p(dn|Dn−1, ξn)ddn︸ ︷︷ ︸
Edn [U(dn,ξn)]

Predictive distribution of observables:

p(dn|Dn−1, ξn) =

∫
Θ

p(dn|θ, ξn)p(θ|Dn−1)dθ

Utility function for our objective:

U(dn, ξn) = H

(
p(θ|Dn−1)

)
−H

(
p(θ|Dn−1, dn)

)
Shannon’s measure of information (Shannon 1948):

H

(
p(θ|Dn−1)

)
= −

∫
Θ

p(θ|Dn−1) log p(θ|Dn−1)dθ

Note: when the purpose of the experiment is other than learning about model parameters, i.e.
accurate prediction of a quantity of interest, then other utility function may be defined (Chaloner and
Verdinelli 1995).
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Information-theoretic Interpretation

Information-theoretic Interpretation
Optimal experiment is obtained by solving:

ξ∗n = arg max
ξn∈Ξ

Edn [U(dn, ξn)]

Information-theoretic interpretation (Paninski 2005, Terejanu et al. 2011):

Edn [U(dn, ξn)] =

∫
D

∫
Θ

p(θ, dn|Dn−1, ξn) log
p(θ, dn|Dn−1, ξn)

p(θ|Dn−1)p(dn|Dn−1, ξn)
dθddn

= DKL

(
p(θ, dn|Dn−1, ξn)

∣∣∣∣∣∣∣∣ p(θ|Dn−1)p(dn|Dn−1, ξn)

)
= I(θ; dn|Dn−1, ξn)

Mutual Information:

• quantifies the reduction in uncertainty that knowing either variable provides about the other
(Cover and Thomas 1991)

• provides a measure of statistical dependence between the two random variables, (connection
with copula functions, see Calsaverini and Vicente 2009)

ξ∗n = arg max
ξn∈Ξ

I(θ; dn|Dn−1, ξn)
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Information-theoretic Interpretation

Estimating Mutual Information from Samples

I(X1; X2) = H(X1) + H(X2)− H(X1,X2)

Kazachenko-Leonenko estimator for differential
Shannon entropy:

H(X) = −
∫

p(x) log p(x)dx ≈ −
1
N

N∑
i=1

ˆlogp(xi )

p(x) ≈
1
N

N∑
i=1

δ(x − xi )

Estimate log p(xi ) using the distance, ε(i), from xi
to its knn (using L-infinity):

H(X) ≈ −ψ(k) + ψ(N) +
d
N

N∑
i=1

log ε(i)

Kraskov estimator for mutual information:

Different distance scales→ different biases which
would not cancel. Do not have to fix k when
estimating entropy of marginals.

I(X1; X2) ≈ ψ(k)− E

(
ψ(nx1 + 1) + ψ(nx2 + 1)

)
+ ψ(N)

Note: small k yields a small bias and large variance, and a large k yields a large bias and a small
variance
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Proof of Concept

Proof of Concept
Consider the model:

d = θ1ξ + θ2ξ
2 + f (ξ)ε , ε ∼ N (0, 1)

f (ξ) = 0.5(1.1− |ξ|) , ξ ∈ [−1, 1]

Measurements generating using:

θ1 = 1.5, θ2 = 3.5
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Comparison of design strategies:

• IM - Information Maximization sampling

• ME - Maximum Entropy sampling (Sebastiani and Wynn 1997 )

• RND - Random sampling
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Proof of Concept

Proof of Concept: After calibration
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Strategy Sequence
ME Sampling 5 6 7 4 1 3 8 9 2 10
IM Sampling 1 10 9 7 2 8 4 3 5 6

RND Sampling 6 1 8 5 10 9 4 2 3 7
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Graphite Nitridation

SRI Experimental Setup

FN2,in P1 XN,1 ∆t LS ∆mC P2
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Graphite Nitridation

Graphite Nitridation Model
Hagen-Poiseuille flow model:

P dP
dz = −

128ṁN2
µN2

RT (z)

πdeff
4WN2

Mean velocity profile:

v(z) =
4.0ṁN2
ρ(z)πdeff

2

Ideal gas density profile:

ρ(z) =
P(z)WN2

RT

N-atom concentration profile:

d(v(z)CN )

dz
= −

γN (T )v̄N (T )CN

deff
− 2k(T )CN2

C2
N

Sutherland’s model for viscosity:

µN2
= µref,N2

(
Tref +SN2

T +SN2

)(
T

Tref

)3/2

Reaction rate for gas phase recombination:

k(T ) = ANN exp
[
−

Ea,N−N
RT

]

Reaction coefficient with the wall:

γN (T ) = γN (Tref )

(
T

(Tref )

)α
Thermal velocity:

v̄N (T ) =

√(
RT

2πWN

)

Mass loss of carbon:

∆MC =
(

∆tπdsampleWC
)(∫ zs+Ls

z=zs
CN (z)

√
T (z)βN dz

)√
R

2πWN
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Graphite Nitridation

Graphite Nitridation - Simulated Measurements
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• IM - Information Maximization sampling

• ME - Maximum Entropy sampling

• ASC - The design sequence is given by the order of the measurements presented in Ref.
Zhang, Pejakovic and Marschall 2009
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Graphite Nitridation

Simulated Measurements: After calibrations
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Graphite Nitridation

Real Measurements: Carbon Nitridation
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Graphite Nitridation

Real Measurements: After calibrations
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FLAG: Conflicting information:

• model + probabilistic
assumptions have limited
explanatory power

• different biases exist in the
measurements

• all of the above

TODO: Experiment Verification and
Model Verification and Validation.
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Conclusions

Conclusions
• Bayesian experimental design equivalent with an

information-theoretic sensitivity analysis.

• Optimal design provides the highest statistical dependence
between model parameters and observables.

• Information maximization sampling is more general that the
maximum entropy sampling and more efficient that random sampling.

• Decreasing trend in entropy indicates that the uncertainty of model
parameters is reduced with additional measurements.

• The trend in the Kullback-Leibler divergence may signal the existence
of conflicting information between model predictions and
measurements.
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Conclusions

G. Terejanu, R. Upadhyay, K. Miki Information-Theoretic Experimental Design for the Active Nitridation of Graphite 18 / 20



Conclusions

Thank you!

Questions?
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Conclusions

References

1 L. Zhang, D.A. Pejakovic, J. Marschall, D.G. Fletcher, “Laboratory
Investigation of Active Carbon Nitridation by Atomic Nitrogen”, AIAA
Paper 2009-4251, AIAA, 2009

2 Gabriel Terejanu, Rochan R. Upadhyay, Kenji Miki, “Bayesian
Experimental Design for the Active Nitridation of Graphite by Atomic
Nitrogen”, Experimental Thermal and Fluid Science, 2011, under
review, arXiv:1107.1445v1 [physics.data-an]

G. Terejanu, R. Upadhyay, K. Miki Information-Theoretic Experimental Design for the Active Nitridation of Graphite 20 / 20


	Motivation
	Sequential Experimental Design
	Information-theoretic Interpretation
	Proof of Concept
	Graphite Nitridation
	Conclusions

